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INTRODUCTION

In this paper we consider a class of weighted trigonometric approximation
problems in .:r;(,5fn). Many of these questions go back to the classic papers
of Beurling [1,2]. One may describe the general problem as that of finding
the best approximation to an arbitrary function from the closed subspace
generated by functions of the form e/(v,wy(w). where f is a fixed function
and where the arguments v are to be taken from a given set S. For .:r;(,5fI)
and S a half-line, these problems, and their solution, are intimately related to
the theory of inner and outer functions. The latter theory does not exist for
,5fn, n ~ 2. However, by use of functional analytic and group theoretic
methods we are able to treat the trigonometric approximation problem for
.:r;(,5fn) with S either a half-space or a quadrant. In so doing, we also arrive
at a beginning of a new theory of inner and outer functions for ,5fn.

The theory of inner and outer functions also plays a central role in the
prediction problem for one-parameter processes; see Dym and McKean [4].
In Gustafson and Misra [5] regular one-parameter processes were charac
terized in terms of the canonical commutation relations of quantum
mechanics. Particular emphasis was placed on the use of cyclic vectors. This
approach enables us to investigate the weighted trigonometric approximation
problems via several-parameter regular processes without appeal to the
theory of several complex variables. As a byproduct, we obtain an abstract
characterization of the regular representation of ,5fn. This answers a question
raised by Chatterji [3. p. 24]. We also observe a new proof for the existence
and uniqueness of outer functions on ,5fI. This comes out of our (new)
formulation and results for inner and outer functions on ,5fn.

The theory of inner and outer functions for compact abelian groups whose
dual is linearly ordered has been developed. See, for example, Helson and
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Lowdenslager [7, 8] and the book by Rudin [16]. For a recent connection
between the compact case and several complex variables see Rubel [15].

As pointed out in [5], the use of the canonical commutation relations, or
more generally systems of imprimitivity, for regular and other processes, is
not new. For example, see the books by Helson [6] and Lax and Phillips [9)
and the references therein.

For simplicity all statements in this paper will be given for gp2. Analogous
results hold in every case for gpn under suitable modifications. There are,
however, various possible directions to take in higher dimensions, which we
have not enumerated here.

In Section 1 we give some preliminaries and descuss the connection with
the prediction problem in .e.t;(gpl) and with the factorization problem in the
frequency domain. In Section 2 we consider a class of weighted
trigonometric approximation problems in higher dimensions. For these, we
obtain a general factorization into inner and outer functions in the transform
domain. The lack of such factorizations has been a major obstacle in the
development of a digital filtering theory in higher dimensions. In Section 3
we give some examples which serve to delineate so-called regular processes
from weak regular processes. In Section 4 we indicate briefly the applications
to digital filtering in higher dimensions, and in the Appendix we give a short
proof of Wiener's theorem on the denseness of a set of translates of a given
functions.

1. PRELIMINARIES

First we discuss the one dimensional case, gpl.
Let {Ut I be a continuous unitary representation of the real line on a

Hilbert space Jr. We will assume {UtI has a cyclic vector qJ, i.e.,
Jr = span {UteqJ)1- 00 < t < 00 I, (1.1 )

where span S denotes the closure of the span of a set S in Jr. Let

(1.2)

The process t -+ Ut(qJ) is called regular provided that

(1.3)

Condition (1.3) is sometimes described as the emptyness of the infinitely
remote past of the process.

EXAMPLE 1.1. Let R t be the regular representation, i.e.,

Rt(f)(x) = I(x - t) (1.4 )
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for all f E Y;(~I). Let qJ be a cyclic vector with the support of qJ contained
in the interval (-00,0]. It is clear that condition (1.3) holds since the
support of each function in 2; is contained in (-00, s ].

Example 1.1 is canonical in the sense that in [5, Theorem 1] it is shown
that any regular process is unitarily equivalent to (1.4) with a cyclic vector
qJ, and with the support of qJ contained in (-00, 0]. In Section 2 we will see
that one may obtain a result stronger than that noted in [5]. Namely, any
regular process is unitarily equivalent to the regular process with a cyclic
vector qJ satisfying

span {~(x - t)1 t";;; O} = Y;(-oo, 0]. (1.5 )

This fact follows from a more general result (Corollary 2.1) proven in
Section 2. That result for the one dimensional case is known [4] and we may
state it here:

COROLLARY 1.1. If 'If is any nontrivial Y;(~I) function with support
contained in (-00,0], then there exists a measurable function g such that
Igl = 1 almost everywhere and such that qJ = -(grji) is a cyclic vector for the
regular representation satisfying condition (1.5).

Throughout, rji denotes the Fourier transform of 'If and -'If denotes the
inverse Fourier transform of 'If, see Rudin [17, p. 187].

For a cyclic vector qJ of the regular representation R t satisfying (1.5) one
can easily compute the orthogonal projection E s of R onto R s for the
process generated by qJ according to the simple rule

(1.6)

for all fin Y;(~l), where Xl-oo.s] is the characteristic function of (-00, s].
Thus, given any cyclic vector 'If such that the regularity condition (1.3) is
satisfied, one can explicitly (in principle) compute the projections E s
corresponding to the process generated by 'If from the g of Corollary 1.1. Let
us emphasize this point, which is in other terms, that in this way one can
find for any given f in !Ji(~I) the best !Ji(~I) approximation to f from
functions in 2;, that is, EJ.

This in fact goes to the heart of the so-called prediction problem (see [4 J),
that is, the computing of the best !Ji(~I) approximation to f from negative
translates of 'If. For an equivalent formulation of the prediction problem, let
us take the Fourier transform of f and 'If. From this we see that the best
Y;(~I) approximation to J by functions from the subspace
span {eixtrjil t";;; s} is given by -E$(I). This is the solution (in principle) of the
weighted trigonometric approximation problem for Y;(~I) for such 'If.

The calculation of g is not trivial, and it leads one into the theory of inner
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and outer functions in cr2 (Hardy space). Let us now give a very brief
description of this theory, following the development given in [4]. Define the
Hardy class cr2 + to be the set of functions h which are analytic in the upper
half-plane ~2+, with norm

Ilhll2+ = ~~~ Ilhb l1 2 = ~~~ (Jlh(a + ib)12 da) 1/2 < 00, (1.7)

where hb(a) = h(a + ib). If -f(x) = 0 for x ~ 0, then

h(w) = {tJ eiWX-f(x) dx

is of class cr2+, IlhilL = IlfilL and

lim II hb - fl1 2 = O.
b~O

(1.8)

(1.9)

Conversely, given any h Ecr2+, there exists an f in Y; with -f(x) = 0 for
all x ~ 0 and such that (1.8) holds. Because of (1.9) one says that f is the
boundary value for h.

The class cr2
- is similarly defined as analytic functions on the lower half

plane ~2- with

h(w) =reiwx(f(x)) dx (1.10)
-00

with -f(x) = 0 for x ~ O. The two spaces r+ and cr2
- are related since

h#(w) == h(w) is in cr2+ if and only if h in cr2
-.

DEFINITION 1.1.
nontrivial and

A function h E cr2 + is an outer function if it is

(1.11)

where ho is the boundary value of h, and w = a + ib.

DEFINITION 1.2. A function g is an inner function if it is analytic on
~2+, if Igl < 1 on ~2+, and Igl = 1 almost everywhere on ~I.

It is known (see [4, p. 37)) that any nontrivial element of cr2+ can be
factored as the product of an outer function and an inner function, and this
can be done in only one way, up to constant factors of modulus one. The
outer factor is given by

hO(w) = exp ~Joo (AW + 1) In Iho(A)1 dA.
ni -00 (A - w) (A 2 + 1) (1.12)

Then one may define the inner factor as g = h/ho.
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By [4,p.39], the span{eiAxhlx>O} is gr-+ if g is any inner factor of
the nontrivial term h in cJr2 +. In particular

(1.13)

if and only if h is outer. By the Plancherel theorem h is an outer function if
and only if

span{-h(t - x)1 t ~ O} = Y;(-oo, 0].
(1.14)

These results readily imply Corollary 1.1. In fact if 'I' E Y;(-oo, 0] and
nontrivial, then lji E cJr2 - and lji# is in cJr2 +, and moreover lji# = hog l' where
g 1 is an inner function and where ho is an outer function. Let g = (gf) - 1. It
may be verified that g then satisfies the conclusion of Corollary 1.1.

We see from the above discussion that on the real line, regular processes
can be analyzed in terms of inner and outer functions. However, there are
problems with extending the theory of inner and outer functions to gr,
because the inner functions employ Blaschke products [5, p. 53]. Let us here
quote Zygmund [23, Chap. XVII, p. 316]:

This case (m = I) is rather exceptional and many results facilitating its study are
false when m > 1. For example, the zeros of regular functions of a single variable
are isolated; and if we divide any f from %P or .f by the corresponding Blaschke
product we do not alter the class of the function, so that we can thereby reduce the
general case to that of a function without zeros. The zeros of regular functions of
several variables, on the other hand, form continua and no analogue of the
Blaschke product exists, with the result that the theory of classes %P and .1/ is
much less complete.

Taking (1.14) as a starting point, we will obtain some results about inner
and outer functions in higher dimensions without appeal to complex variable
methods. From these we solve a class of weighted trigonometric approx
imation problems in Y;(..'R 2

).

2. THE REGULAR REPRESENTATION AND Two DIMENSIONAL

REGULAR PROCESSES

We begin by giving an abstract characterization of the regular represen
tation of ..'R2

, and then define and characterize two dimensional regular
processes.

Let U(X,y) be a continuous unitary representation defined on a Hilbert
space cJr with cyclic vector f/J, Le., span {U(x,y)(f/J)I(x, y) E ..'R2}=cJr. It
follows that cJr is a separable Hilbert space (recall that a unitary represen-
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tation is defined to be continuous in the strong operator topology). Let E(s.tl,
E s and F t be the projections of 2 onto, respectively,

span {U(x,y)tplx ~ s, y ~ t},

span {U(X,y) tp Ix ~ s},

span {U(X,y)tp I y ~ t}.

Denote the range of any projection P by Sf(P).

(2.1)

THEOREM 2.1. A unitary representation U(x,y)of Sf2 on a nontrivial
Hilbert space 2 is unitarily equivalent to the regular representation R of .9f2
if and only if there exists a cyclic vector tp with

nSf(Es) = {Of = n.9f(Ft)·
t

(2,2)

Proof Let U be a unitary representation of Sf2 on 2 with cyclic vector
tp. Notice that U(X,yjEsU(_x,_y) and Es+x are two orthogonal projections
with the same range and hence

(2.3a)

and similarly,

(2.3b)

The family of projections {E s } is monotone in s and hence the limits
Es+ = lims....s+Es and Es~ = lims....s~Es both exist. It is easy to show
Es+ - E r = U(s,o)(Eo+ - Eo-) U(-S,O) for all s, Thus all of the operators
E s+ - E r are zero or all of them are nonzero. If tps E Sf(Es+ - Es-) and
tps =I=- 0 for all s then the family {tps} forms an uncountable mutually
orthogonal family in 2, which is impossible in a separable Hilbert space.
Thus E + =E r , and similarly F t + = F t -.

From the addition assumption (2.2) we see that the families {Es} and {Pt}
generate projection-valued measures. Thus V(O,tl = f eixt dFx and
V(S,O) = f e,xsdEx are representations of .~I. Thus from (2.3) we have the
commutation relations

(2.4)

U V U - -iqyV(x,y) (O,q) (-x.-y) - e (0. ql'

U(X,y) V(r,o) U( -x. _v) = e- irxV(r,o)'
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By Stone's theorem (see Naimark [13, p,419), Uv = f e/(v,W)dP(w) for
some projection-valued mueasure P on .9!2. Let

v(e) = (P(e)¢, ¢) (2.5)

for all Borel sets e in .9!2. Let Tf = f f(w) dP(w) for any bounded
measurable function f. Define a unitary operator U from cr onto ~(.9!2, v)
by first defining U on the dense set {T!,p If bounded and measurable}
according to U(Tt<({J» = f It is standard that this mapping is a well-defined
isometry of a dense subset ofcr onto a dense subset of ~(.9!2, v), and hence
there exists a unique unitary extension U. Moreover, UTfU- I = Mf for all
bounded measurable functions f, where Mf is defined by Mt< g) = fg for all
g E ~(.9!2, v). Thus UUvU- 1 = Mfl" where fv(w) = ei(v.W), and
UP(e) U- I = Mxe' We notice v is nontrivial si~ce cr is nontrivial.

Returning to (2.4), V(o. _q) U(x.y) V(o.q) = e- 1qy U(X,Yl' which gives

= e- iqyfei(u,w) dP(w) = fe;(v.w-(O,q» dP(w).

Thus by the uniqueness of the projection-valued measure in Stone's theorem
(or, for example, [16, Theorem 1.3.6, p. 17]), we have

V(O._q)P(e) V(o.q) = P(e + (0, q»

for all Borel sets e. Similarly,

V(_r.o)P(e) V(r.O) = P(e + (r, 0»,

and

V(-r.o) V(O,_q)P(e) V(O,q) V(r.o) = P(e + (r, q». (2.6)

The following statements are thus all equivalent: (a) P(e) = 0,
(b) P(e + (r, q» = 0, (c) Tx = 0, (d) Tx = 0, (e) v(e) = 0,

e (e+(,.Q»

(f) v(e + (r, q» = O.
Hence v(e) =°if and only if v(e + (r, q» = 0, and v is a nontrivial measure.
By a well-known result for quasi-invariant measures (e.g., see Mackey [10,
Lemma 3.3, p. 318]), v is equivalent to the Lebesgue measure on .9!2.

Define an isometry V of~(.9!2, v) to ~(.9!2, m) by V(f) = f(dv/dm)1/2,
where m is the Lebesgue measure on .9!2. Notice VMfl' V-I = Mfl' . Next we
compose the above two isometries with the Fourier transform to conclude
that Uv == U(X,y) is unitarily equivalent to the regular representation R v'

Rv(f)(w) = f(w - v). (2.7)
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The converse part of Theorem 2.1, that the regular representation in !JR2
always has such a cyclic vector, is shown in Section 3.

The above Theorem 2.1 gives a characterization of the regular represen
tation in terms of a cyclic vector. Any unitary representation of any locally
compact second countable group is cyclic, Mackey [12, Theorem A, p. 47],
and thus it would be interesting to know if the regular representation of any
such abelian group has a characterization in terms of cyclic vectors.

We now define and characterize regular processes on !JR2.

DEFINITION 2.1. Let U(x.y) be a continuous unitary representation of !JR2
on a Hilbert space H with cyclic vector qJ. We say v -+ Uv(qJ) is a regular
process if (2.2) holds and

(2.8)
for all (s, t) in ,5f2.

Let us remark that there are many possible definitions for regularity here.
See, for example, Chatterji [3], where U is defined to be a regular process
provided that U is unitarily equivalent to the regular representation. Chatterji
then poses the question of characterizing the latter. We have so characterized
such representations for !/l2 in our Theorem 2.1, thus answering Chatterji's
question for !/l2. This characterization, in terms of cyclic vectors, holds as
well for !/In.

We also note that in Tj0stheim [21] the multiplicity theory of the regular
representation is considered in terms of commutation relations. However, the
characterization of the regular representation in terms of cyclic vectors is not
considered in [21].

In the following we will also consider a condition (2.13) that is less
stringent than (2.8). We should comment here that our main motivation for
(2.8) is that it allows us to analyze the projections E(S,t) by showing that
they are unitarily equivalent to the projections given by multiplication by
X( _OO,s]x( _ 00,1]' Thus if one could compute that unitary equivalence, one
could find the best ~(!JR2) approximation to any function in ~(!JR2) by
functions in span {ei(v,w)qJ(w)1 v = (x,y), x~s, y~t}, where qJ is a given
cyclic vector generating a regular process. This, of course, is a class of
weighted trigonometric approximation problems in ~(9l2).

Motivated by (1.5) and (1.14) we define outer functions for 9l2
•

DEFINITION 2.2. A function 'II E ~(!/l2) is an outer function if

spanr'll(v - w)lw = (x,y), x ~ 0, y ~ O} = ~(-oo, 0] x(-oo, 0]. (2.9)

THEOREM 2.2. Let v -+ Uv(qJ) be a regular process on 2 with cyclic
vector qJ. Then there exists a unitary mapping V of 2 onto .<tt;(!/l2) such
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that VUvV-I = R v is the regular representation and it is an outer function,
where 'II = V(<fJ).

Proof. From (2.8) and the proof of Theorem 2.1 we see there is no loss
of generality in assuming that cr = ~(Sf'2) and that Uv is given by
Uv(f)(w)=ei(V,W)f(w) for all fE~(Sf'2), and that Uv=fei(v,W)dP(w),
where pee) = M x•

Since EsFt = E(S,O for all sand t, we see that

FtEs= (EsFt)* = (E(s,o)* = E(S,O = EsFt·

Thus the projections E s and F t commute and so by a well-known result for
projection-valued measures (e.g., see Mackey [11, Theorem 2.10, p. 203]) we
know there exists a unique projection-valued measure E such that

E((-oo, s] x(-oo, t]) =E(S,O =E.Ft. (2.10)

Since the representations V(O,q) and V(r,o) given in the proof of Theorem 2.1
commute, we may define a representation of Sf'2 by V(r,q) = V(r,o) V(O,q). By
(2.4) we have the commutation relations

and

U U = e-i(v,w) V U
v w w v

U_vE(e) Uv= E(e + v),

(2.11 )

(2.12)

where (2.12) follows from (2.11) by an argument similar to that in
Theorem 2.1.

We are now in a position to apply the Stone-von Neumann theorem [12,
Corollary 2, p. 181] or the imprimitivity theorem [12, Theorem 3.10, p. 174,
and Corollary 1, p. 180]. We wish to show that the family {Uv ' Vw} is
irreducible; Le., we show the only operators commuting with (Uv ' Vw) are
operators of the form cI for some constant c.

Suppose T commutes with Uv and Vw' Let 'III and '112 be vectors in cr;
then

where vl(e)= (P(e) 'liP T*('II2» and v2(e) = (P(e) T('III)' '112)' By [16, p. 17]
we have vI(e) = v2(e) and pee) T= TP(e) for all e. Thus T commutes with
M x• for all e, and so T commutes with M f for all bounded measurable
functions f. It is known that {MArE..sfoo } is a maximal abelian algebra in
the space of bounded operators on cr [12, p. 98]. Thus T = Tg for some
bounded measurable function g.
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From (2.6), V _wP(e) Vw= P(e +w), or equivalently, V-wMx Vw= Mx .
e (e+w)

By an elementary measure theory argument this extends to V-wMfVw= Mfw
for all bounded measurable functions f, where (fw)(v) denotes the tran
slation f(v - w). But T = Tg commutes with Vw' so gw = g for all w in gp2,
and thus g is equal almost everywhere to a constant. Thus T = cI for some
constant c, and {Vw' Uv } is irreducible.

By the imprimitivity theorem there exists a unitary mapping V such that
R v= VUvV- 1 is the regular representation and VE(e) V-I = M

Xe
' Letting

lIf = Vtp, lIf is then a cyclic vector for the regular representation, and

Mx lIf = VE(O 0) V-Ill! = VE(O O)tp = V(tp) = lIf,
(-OCJ,OIxi:-00,01' ,

so the support of lIf is in the third quadrant. Lastly, iJ is an outer function
since

-- -I
because span {Uv(tp )Ix ~ 0, y ~ 0, v = (x, y)} = R(E(o.o» and VE(o,o) V =
MX(-OO,O]x<-oo,Oj' This completes the proof of the theorem.

Before leaving Theorem 2.2, let us comment further on the form of the
above isometry V.

Let lIf be any cyclic vector for the regular representation such that
v -tRv(lIf) is a regular process. Theorem 2.2 states that there exists a unitary
V such that VR vV- I = R v' and such that VE(e) V- I = Mxe' The first obser
vation we make is that if VI is any other such unitary mapping then
V = cVI' where c is a complex scalar with Ic I= 1. This follows from the fact
that VII V is an operator that commutes with {R v} and {E(e)} and from the
irreducibility of this family of operators.

Next let us apply the Fourier transform. Then R v is equivalent to Uv = Mf
with fv(w) = eHv,W). V is thus seen to be equivalent to an isometry W with
the property that WUv W- I = Uv' and so from the above proof we know that
W = M g with Igl = 1. From this, we have now proven the following
corollary.

COROLLARY 2.1. Let lIf be any cyclic vector for the regular represen
tation such that lIf-tRv(lIf) is a regular process. Then there exists afunction
g such that Igl = 1 a.e., and giJ is an outer function. The function g is
unique up to a scalar multiple of absolute value one.

Applying the above proof of this corollary to the one dimensional case, we
arrive at a proof of Corollary 1.1. As noted in the previous section, this
proof is parallel to that of [5] but observes additional information about the
cyclic vector.

Any function lIf satisfying the hypotheses of Corollary 1.1 is cyclic,
because iJ =1= 0 a.e. The latter condition is equivalent to cyclicity for the

640/31/4-6
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regular representation of .9f1. We shall give a short proof of this for .9fn in
the Appendix.

We should also remark here that Helson [6, p. 46] gives yet another
functional analytic proof of Corollary 1.1. His idea is based on a cocycle
proof similar to that found in the imprimitivity theorem. Helson's proof
suggests an alternate approach to the problem in .9fn. The cyclic vector
approach, however, seems to be technically simpler.

The results of Theorem 2.2 and Corollary 2.1 may be viewed as an
application of the Stone-von Neumann theorem (see Putnam [14 D. For
some interesting generalizations of this theorem see Segal [20]. We note that
the existence of outer and inner functions as we have formulated them is thus
a consequence of this theory.

Corollary 2.1 may be viewed as a factorization theorem; i.e., if v --+ R v('II)
is a regular process then Vi = g'llI' where Ig I= 1 a.e., and 'II I is an outer
function, and this factorization is unique up to scalar constants of absolute
value one. It would be useful to have a complex variable formula for the
outer factor similar to (1.12).

If one replaces condition (2.8) with the less stringent assumption

(2.13 )

the above theory still holds with minor modifications. Namely, we see that
(2.9) should be replaced by

span ( 'II(v - w)lw = (x, y), x ~ O} = L 2(-co, 0] x(-co, co),
_ _ (2.14)
span { 'II(v - w)lw= (x, y), y~O}=L 2(-co, co)x(-co, 0].

These weaker conditions still allow us to compute the projections E s and Ft.
However, it is not the case that (2.13) implies (2.8), as we shall see in
Section 3. It would be of interest to know in what generality (2.13) holds.

3. SOME EXAMPLES

EXAMPLE 3.1. If I and g are functions both satisfying (1.5) then
h(x, y) = I(x) g(y) is a function satisfying (2.2), (2.8) and (2.9). This is so
because .9f(E(o.o» for h contains all functions of the form II(x) gl(y),
where the support of II and gl is in (-co,O]. Thus .9f(E(o.o) =
~(-co, 0] x(-co, 0]. Hence we have demonstrated the existence of a cyclic
vector for the regular representation of .9f2 satisfying (2.2), which conse
quently proves the converse of Theorem 2.1.

For an explicit cyclic vector ({J, let ((J=f(x)g(y) with f=g=x(-I.O]·
The functions f and g satisfy (1.5) because span {f(x - t)1 t ~ O} S;
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~(-00,0], similarly for g, and if w(x)E~(-oo,O], and w is orthogonal
to span{f(x-t)lt~O}, then f:-l w(x)dx=O for all t~O. Hence
w(t) = w(t - 1) for almost all t ~ O. But this contradicts w E ~(-oo, 0]
unless w = o.

EXAMPLE 3.2. Let S be the tilted (45°) square in the third quadrant of
,9f2 with two vertices at (-1,0), (0, -1). Let h = Xs' Then h is a cyclic
vector for the regular representation satisfying (2.2) and (2.13) but not
satisfying (2.8). That h satisfies (2.2) follows easily from the fact that the
support of h is in the third quadrant. The range of Eo is
~(-oo, 0] x(-00, (0). To see this, notice that ~(Eo) containsall functions
with support between the lines y = ± x - t and in the left half-plane of ~2,
for any real t. This follows from the rotation and translation invariance of
Lebesgue measure and Example 3.1. Similarly ~(Fo) is ~(-oo, (0) X

(-00,0]. Thus EoFo=FoEo' which implies EsFt=FtEs for all sand t.
However, EoFo '* E(O,O) because the characteristic function of the triangular
region bounded by the points (-1,0), (0,0) and (0, -1) is a nonzero
function in ~(EoFo) that is orthogonal to ~(E(o,o))'

The fact that in general E(o,O) and EoFo need not be the same distinguishes
the higher dimensional problems from the one dimensional problem, where
no such considerations arise.

For example, in higher dimensions there are immediately at least two
notions of regular processes, Let U(X,y) be a continuous unitary represen
tation of ,gp2 on a Hilbert space £ with cyclic vector qJ. Let v run through
,9f2. According to Definition 2.1, Uv(qJ) is a regular process if (2.2) and (2.8)
are satisfied.

DEFINITION 3.1. Uv(qJ) is a weak regular process if (2.2) and (2.13)
hold.

From Example 3.2 we see that the notions of regular process and weak
regular process are generally distinct. In like manner, one has a notion of
weak outer function (2.14), and a corresponding factorization theorem.
Further examples indicate a rich theory in higher dimensions dependent to
some extent on the support and geometric properties of qJ.

4. ApPLICATIONS

Digital filtering theory relates to a number of diverse subjects such as time
series analysis, numerical analysis, analog filters, data control systems,
econometrics, fast Fourier transform, signal processing, and others, including
general stochastic processes and random field theory as seen above. Here we
restrict attention to just one aspect of digital filtering theory, where the lack
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of a factorization method has been a major obstacle to theory and
applications in higher dimensions.

For the one dimensional case some indication of these connections may be
found in the book by Dym and McKean [4].

An inner function corresponds to what is called in information theory the
transfer function of an "all-pass" system. Outer functions correspond (after
inverse transform) to input wavelets which are optimal in the sense of
producing "maximum gain." A filter is given by the expression

Kf=fqJ(x - s) f(s) ds = <RxqJ, 1>, (4.1 )

where qJ has support in the left half-line (past time domain) and where fare
arbitrary signal inputs in L 2(-00, (0). K is thus an integral operator
generated by a given wavelet qJ under regular representation. As is well
known, solving (4.1) leads to considerations in Wiener-Hopf theory.

An excellent survey of developments up to 1974 is given in Kailath [24].
Potential applications in higher dimensions include image deblurring and

other array processing applications, X-ray enhancement, weather prediction,
seismic analysis, among others. For some specific work on 2-D and 3-D
digital filtering, see, for example, Mercereau and Dudgeon [25], Ekstrom
and Woods [26], Ekstrom and Twogood [27], and the references therein. In
each of these papers one will find factorization considerations to be
paramount, and a major obstacle to a general theory.

ApPENDIX

Wiener [22] considered the problem of when the translates of an 2';,(M' 1)
function are dense in 2';,(M'I), for p = 1,2,00', in terms of the nonvanishing of
the Fourier transform. Segal, in [18, 19], extended these results to arbitrary
locally compact abelian groups. For completeness we give here a shorter
proof that the translates of a function IfI in ~(M'2) are dense in ~(M'2) if
and only if iJ vanishes at most on a set of measure zero. Our proof
generalizes to locally compact second countable abelian groups, and proves
the existence of a cyclic vector for the regular representation.

First suppose iJ is zero on a set of positive measure F. Then pick
f E ~(M'2) with support in F. Obviously, f is not in the
span {ei(v, w) iJ(w)1 v E M'2}. Taking the inverse Fourier transform we see f is
not in the closure of the span of the translates of 'If.

Next suppose {wi iJ(w) = O} is a set of measure zero. As we saw above,
the family of operators {Mv}' given by Mv(J)(w) = ei(V,W)f(w), generate a
maximal commutative family of bounded operators on ~(M'2). As in the
proof of Theorem 2.2, the first, and the second, commutant of {Mv } is the set
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of all operators {Mg }, where g E !:f'eo' By the von Neumann double
commutant theorem [13, Corollary I and Corollary 2, p. 448] the strong
operator closure of the span of {Mv } contains all {Mg } with g E !:f'oo' Thus
span{ei(V,W),p(w)lvER 2} 2 {g,plgE!:f'oo}' Supposing h is in .:t'i(~2) and
orthogonal to {g,pl g E !:f'oo}' letting g = Xe for any Borel set e we have
Ie h(w) ,p(w) dw = O. By the Radon-Nikodym theorem h(w) ,p(w) = 0 a.e.,
and h = O.
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